Fusing Concurrent EEG and fMRI Intrinsic Networks

نویسندگان

  • David Bridwell
  • Vince Calhoun
چکیده

Different imaging modalities are sensitive to different aspects of brain activity, and integrating information from multiple modalities can provide an improved picture of brain dynamics. Electroencephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) are often integrated since they make up for each other’s limitations. FMRI can reveal localized intrinsic networks whose BOLD signals have periods from 100 s to about 10 s. EEG recordings, in contrast, reflect cortical electrical fluctuations with periods up to 20 ms or higher. The following chapter surveys the physiological differences between EEG and fMRI recordings and the implications and results of their integration. EEG-fMRI findings are reviewed in cases where individuals do not participate in an explicit task (e.g. during ‘‘rest’’). The results are discussed in the context of different methodological approaches to EEG-fMRI integration, including correlation and GLM-based analysis, and ICA decomposition of group EEG-fMRI datasets. The resulting EEG-fMRI networks capture a broader range of brain dynamics compared to EEG or fMRI alone, and can serve as a reference for studies integrating MEG and fMRI.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The spatiospectral characterization of brain networks: Fusing concurrent EEG spectra and fMRI maps

Different imaging modalities capture different aspects of brain activity. Functional magnetic resonance imaging (fMRI) reveals intrinsic networks whose BOLD signals have periods from 100 s (0.01 Hz) to about 10s (0.1 Hz). Electroencephalographic (EEG) recordings, in contrast, commonly reflect cortical electrical fluctuations with periods up to 20 ms (50 Hz) or above. We examined the corresponde...

متن کامل

On the feasibility of concurrent human TMS-EEG-fMRI measurements.

Simultaneously combining the complementary assets of EEG, functional MRI (fMRI), and transcranial magnetic stimulation (TMS) within one experimental session provides synergetic results, offering insights into brain function that go beyond the scope of each method when used in isolation. The steady increase of concurrent EEG-fMRI, TMS-EEG, and TMS-fMRI studies further underlines the added value ...

متن کامل

Concurrent EEG/fMRI analysis by multiway Partial Least Squares.

Data may now be recorded concurrently from EEG and functional MRI, using the Simultaneous Imaging for Tomographic Electrophysiology (SITE) method. As yet, there is no established means to integrate the analysis of the combined data set. Recognizing that the hemodynamically convolved time-varying EEG spectrum, S, is intrinsically multidimensional in space, frequency, and time motivated us to use...

متن کامل

Multimodal integration of fMRI, EEG, and NIRS

Multimodal integration in the field of human brain mapping has evolved from structural-functional co-registrations toward functional-functional combinations. This paper briefly reviews fMRI-EEG, fMRI-NIRS, EEG-NIRS, and fMRI-EEG-NIRS combinations. OCIS codes: Inverse problems (100.3190); Functional monitoring and imaging (170.2655); Medical and biological imaging (170.3880); Physiology (170.538...

متن کامل

Fusing Simultaneous EEG-fMRI by Linking Multivariate Classifiers

Multivariate pattern analysis (MVPA) has typically been used in neuroimaging to draw inferences from a single modality, e.g., functional magnetic resonance imaging (fMRI) or electroencephalography (EEG). As simultaneous acquisition of different neuroimaging modalities becomes more common, one consideration is how to apply MVPA methods to analyze the resulting multimodal dataspaces. We present a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014